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ABSTRACT: Conceptual domain modelling is a complex learning task. To achieve good 
performance in conceptual domain modelling, students need a lot of feedback and lots of 
exercises. Given a teacher's limited amount of available time, there is a need to reflect on 
how to address the complexity of the learning task more effectively, how to improve the 
exercises provided to the students, and it is required to find ways to provide students with 
feedback more efficiently. This paper presents an experience report with the use of an 
instructional design method and automated feedback to address the challenge of teaching 
conceptual domain modelling more effectively. In particular, to obtain a more clear view 
on learning goals, and in particular on how to sequence the learning goals, a learning goal 
taxonomy was developed based on Bloom's taxonomy. Then, to achieve a better organi-
sation of lectures, exercises and feedback in a systematic way, and in line with learning 
goals, elements of the 4C/ID method were applied. Finally, as a way to improve the deliv-
ery of feedback, the provision of simple feedback forms was automated. All in all, the 
experiences are positive for the teacher as well as for the students. 

Keywords: Conceptual Modelling, Instructional Design, Technology-enhanced learning, 
automated feedback. 

Introduction 
The subjects that are taught in higher education are often "complex learning tasks". By 
this we refer to problem solving tasks where different solutions may be considered for the 
same problem, and where different paths can be followed to obtain a solution. Moreover, 
complex learning tasks are characterized by the fact that many competences need to be 
integrated to perform well. 
A typical example of such complex learning task is conceptual domain modeling, a topic 
taught in many computer science and information systems engineering curricula. Concep-
tual domain models are used to map the fundamental concepts of a domain of interest, 
and as the fundament for a high-level design of an information system. Conceptual domain 
modeling is a complex learning task: delivering models of good quality requires the inte-
gration of a series of competences in the field of requirements engineering (e.g. require-
ments gathering, understanding and analysis), and problem-solving skills (creativity, 
design skills, critical thinking skills). Furthermore, there are neither unique correct solu-
tions, nor unique paths to arrive at a good solution.  
Teaching complex learning tasks effectively poses a number of challenges to the teach-
ers. A first challenge is a thorough understanding of the different competences needed to 
achieve good performance, as well as the required level of integration of these compe-
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tences. Furthermore, a good understanding of how partial goals can be achieved as inter-
mediate steps to the final learning goal is needed for assessing the competences of a 
student more accurately and providing better guidance.  
A second challenge relates to the organization of the teaching itself. Especially in the case 
of larger groups of students with diverse backgrounds, handling the different pace at which 
students acquire the learning goals can be quite a challenge. While some students pro-
gress quickly and need more advanced exercises, other students are struggling and need 
more basic exercises. Determining the best pace at which to deliver theory and exercises 
is thus far from easy. And even when allowing students to study at their own rhythm, 
keeping track of what material to offer when to whom is quite challenging. A third challenge 
is related to feedback provisioning. By the fact that each problem may have several solu-
tions, possibly with different ranges of quality, and that different paths can be followed to 
reach these solutions, just providing feedback about solutions being right or wrong is in-
sufficient. Students will need (and request) personalized feedback and of explanatory na-
ture rather than merely corrective. 
This paper presents an experience report and explains how these different challenges 
were addressed by making use of educational theories and automation in a conceptual 
modelling course. The course "Architecture and Modelling of Management Information 
Systems" is taught yearly to a group of around 180 master students with varying back-
grounds in terms of prior exposure to computer science topics. Both the large variance in 
prior knowledge and the size of the group make the teaching of the complex topic of con-
ceptual modelling quite challenging. Section 2 explains how the use of Bloom's taxonomy 
helps in organizing learning goals, understanding their mutual relationships and develop-
ing a more stepwise approach to teaching and evaluation. Section 3 explains how the 
application of the Four-Components Instructional Design (4C/ID) method helps in devel-
oping and organizing the learning material.  Section 4 then explains how the needs for 
more feedback were addressed by means of automation. Finally, section 5 concludes the 
paper with lessons learned. 

Organizing Learning Goals according to Bloom's taxonomy 
Bloom's taxonomy has been developed in 1960 and has been revised in 2002 (Krathwohl, 
2002). It is organized along two dimensions: the cognitive dimension defining six cognitive 
processes: Remember, Understand, Apply, Analyze, Evaluate and Create, and the 
knowledge dimension defining four types of knowledge: Factual, Conceptual, Procedural 
and Metacognitive knowledge (see Figure 1).  

 
Figure 1. Revised Bloom's Taxonomy 



The knowledge dimension allows distinguishing different types of knowledge: 
Factual knowledge is the basis of the studied disciplines, such as basic terminology 
and/or notation. The symbols of UML class diagrams or BPMN is an example of fac-
tual knowledge. 
Conceptual knowledge implies understanding the connections and interrelationships 
between the basic elements learned on factual level. The concepts of "class", "asso-
ciation", "activity", "event" as semantics concepts represented by the symbols, and 
how these concepts are related, are examples of conceptual knowledge. 
Procedural knowledge refers to the subject-specific methods, procedures and rules. 
This could refer to usage of tools, processes to follow to achieve certain goals, etc. 
Metacognitive knowledge is strategic knowledge related to the learning process and 
the student’s awareness of own knowledge. An example is a student's knowledge 
about one's progress in the course, best working hours of the day, inclination to pro-
crastination and effective countermeasures that work for him/her, etc. 

The cognitive processes are defined by action verbs that characterize the learning tasks 
associated with them: 

Remember: to define, recall, identify. An example would be to be able to name a list 
of symbols, or to draw the symbol given their names (e.g. draw the symbol for a non-
interrupting timer event in BPMN). 
Understand: to discuss, explain, match. An example would be explaining the differ-
ence between an interrupting and non-interrupting event in BPMN. 
Apply: to use, practice, execute. An example would be to be able to use a program-
ming environment to load and compile a program.  
Analyze: to examine, analyze, compare. An example would be to find the differences 
between two proposed solutions and formulate the impact of these differences. 
Evaluate: to check, verify, critique. An example would be to verify whether a solution 
(a program, a model) satisfies given requirements. 
Create: to design, build, improve. An example would be creating a model or a software 
program from given specifications. 

The ultimate learning objective of a course on conceptual modelling is the ability to Create 
models. This learning objective can be classified in the cell Conceptual knowledge/Create. 
One can easily see that to reach this final goal, intermediate objectives need to be 
achieved that are classified in the other cells of the framework. Examples of intermediate 
learning objectives, with their classification in the corresponding cell in Figure 1 are as 
follows:  

LO1: Students need to master the modelling notation. 
LO2: Students need to understand the concepts behind the symbols.  
LO3: Given a requirement, a student needs to recognize what concept is suited to 
capture this requirement. 
LO4: A student needs to be able to use a modelling tool to draw a diagram. 
LO5: Given a UML class diagrams and an ER-model, a student needs to analyze their 
similarities and differences. 
LO6: A student understands the different types of model quality. 



LO7: A student is able to recognize model quality problems and label them with the 
correct type. 
LO8: Given two alternative solutions for a same requirement, a student needs to be 
able to decide which one is best. 
LO9: A student is able to evaluate whether a procedure for capturing requirements is 
suited for a given context or not. 
LO10: A student is able to create a solution from a given set of requirements. 
LO11: A student can evaluate the effectiveness of his/her study method. 

When students fail to achieve the final learning objective, i.e. the student creates a bad 
model, the diagnosis of the reason of failure can be performed according to Bloom's tax-
onomy: Does the student know the notation and understand the concepts behind the no-
tation? When making modelling choices, is the student able to analyze and explain the 
difference between to options? Is the student able to evaluate the pros and cons of each 
option? Does the student know and understand criteria for modelling quality? etc. 
The framework also allows to assess to what extent a set of exercises used for either 
formative or summative evaluation covers the entire scale of cognitive processes and 
knowledge types. In (Bogdanova & Snoeck, 2017) the authors examined a variety of as-
sessment instruments sourced from books, exams, and MOOCs. This revealed that the 
assessment materials are considerably unbalanced, which may cause difficulties both in 
the teaching and the learning processes as the majority of courses seem to focus on 
create-level assessments only. This lack of variety in assessment material supposedly 
finds its origin in the lack of an explicit taxonomy of learning objectives for conceptual 
modelling. To support the creation of a more variated set of exercises (Bogdanova & 
Snoeck, 2019) developed the Conceptual Modeling goals Learning Objective Taxonomy 
(CaMeLOT), illustrated with possible corresponding student tasks. CaMeLOT is based on 
the revised Bloom's taxonomy, but as the different modelling concepts themselves also 
have prerequisite relationships, in addition, a concept map of the domain provides further 
support for organizing the learning objectives.  
In the past Bloom's taxonomy has been successfully used in many different fields, such 
as biology (Crowe, Dirks, & Wenderoth, 2008), anatomy (Thompson & O’Loughlin, 2015), 
histology (Zaidi et al., 2017), and software engineering (Dolog, Thomsen, & Thomsen, 
2016; Starr, Manaris, & Stalvey, 2008). Nevertheless, the taxonomy presents some limi-
tations as well. In particular, classification of learning objectives can be somewhat ambig-
uous, and, as also noted by (Starr et al., 2008), concept shifting may occur: in case of 
broad and not too well delineated content areas, certain concepts or terms may be 
switched to similar ones. For example, in modelling, the distinction between applying 
knowledge about concepts and creating a model may seem difficult to make. Neverthe-
less, in a general sense, CaMeLOT was perceived as a useful tool by course instructors 
to help them in being more creative when developing exercises, and making the process 
of developing course material more systematic.   

Applying 4C/ID for course design 
Simple instructional models such as Bloom's taxonomy work well as a starting point for 
improving course design. However, because of the simplicity of the model it cannot cater 
for complex learning. Richer instructional design theories such as the Four Components 



Instructional Design (4C/ID) method (Van Merrienboer, J. J. G. Kirschner, 2018), which 
specifically targets complex learning, are providing better support to perform more funda-
mental changes.  
The four components of the 4C/ID method are the learning tasks, the part-task practice, 
the supportive information and the just-in-time information. 
According to 4C/ID, the learning tasks (or problems) offered to a student should always 
be (close to) real-life cases.  The cases can range from very simple to complex, but should 
preferably always form a good representation of the type of tasks that students will en-
counter in their future work. As students cannot solve cases right away from the beginning, 
support in making the tasks should be provided. The most elaborated form of support is 
when the task is performed by a skilled person, and the student can observe how to ap-
proach a task. Less extensive support can be provided by e.g. performing the first (or last) 
steps, and having the student complete the task. A child baking cookies will e.g. only be 
asked to stick out the cookies from the already rolled out dough, and put them on the 
baking plate, while the other steps are performed by an adult (making and rolling out the 
dough, baking the cookies).  
This concept of varying complexity and varying degrees of support can easily be applied 
to modelling tasks as well. Cases can range from small models needing just two or three 
classes, to complex cases requiring the students to create models of more than 20 clas-
ses. Support can range from providing students with a full model solution with explanation, 
over partial solutions they need to complete, to having the students making a solution from 
scratch. 
The size and levels of support can be used to arrange the exercises in lab sessions to as 
along growing complexity and diminishing support. Figure 2 shows and example of how 
to organize conceptual modelling exercises. The course's running case is a full case ad-
dressing both the data modelling and the behavioral modeling aspects. As the model so-
lution is given and extensively motivated, this is a case with full support. The first lab 
sessions focus on data modeling, starting with more simple cases in lab 1, and proceeding 
to more complex cases in lab 2. Per session, the support decreases from the first to the 
second exercise. Once the students master data modelling, focus can be put on behav-
ioral modeling. To avoid the students having difficulties with behavioral modeling due to 
errors in the data model, the data model can be given as a kind of support. By the end of 
the course, students can be given full cases, where they need to address both aspects of 
modelling themselves. Besides providing students with partial models, other types of sup-
port can be provided, e.g. in the form of guiding questions, or by indicating steps to follow.  
Part-task practice are exercises that help students to perform basic tasks in an almost 
automatic way without reflection. This can for example be achieved by making use of 
quizzes offering students drilling exercises, e.g. to learn notations, vocabulary, tool 
menus, etc. A more elaborated form of part-task practice is developing exercises that 
specifically focus on frequently occurring errors. In (Bogdanova & Snoeck, 2018) we re-
port on an experiment that demonstrates the effectiveness of such error-correcting exer-
cises to avoid repeating these same mistakes in subsequent tasks. 
The supportive information is the learning material that is permanently at the disposal of 
students. In can be offered as a textbook, a series of videos or on a website. Just-in-time 



information is the information that is given to students at the moment they need it. The 
help function of a tool is an example of such information, as well as a teacher's advice 
given when a student is observed making a mistake.  

 
Figure 2. Organizing tasks in lab sessions along growing complexity and diminishing support - The size of the circle 
indicates the complexity of the task, and the filling the level of support. Yellow tasks represent data modelling, with no 
requirement for behavioral modelling. For blue tasks, the data model is given (= given support), and the students need 
to create the behavioral model. Green tasks are full cases where the students need to perform both data and behavioral 
modeling. 

The application of instructional design methods requires a deep understanding of cogni-
tive schemas and knowledge required to perform a task. As for conceptual modelling, 
much of this knowledge is still tacit, using a rich method such as 4C/ID right from the first 
time of teaching the course would have been too overwhelming. Starting with Bloom's 
taxonomy was therefore needed: it allowed developing a better understanding of the dif-
ferent types of leaning objectives that can be considered, it helped creating a more rich 
pallet of exercises and developing a better understanding of student's cognitive patterns. 
This increased understanding allowed reaping the benefit of the 4C/ID method.   

Technology-supported feedback 
Feedback is essential in fostering students' learning (Hattie & Timperley, 2007). Training 
student in a complex learning tasks such as conceptual modeling requires a lot of individ-
ual feedback: given a certain problem, different students will come up with different solu-
tions for the problem, and will follow different paths to arrive at a solution. Giving corrective 
feedback (i.e. telling a student whether his/her solution is right or wrong) will not suffice 
as students need to understand why solutions are better or worse, and how to evaluate 
differences between solutions. It is therefore important to make use of many different pos-
sible forms of feedback, including more advanced forms (S. Serral, Ruiz, Elen, & Snoeck, 
2019). Given that the size of the class grew from a manageable number of 50 students to 
approximatively 180 students, providing all students with a sufficient amount of personal-
ized feedback was a growing concern that was addressed by making maximal use of 
technology-supported feedback. 
Corrective feedback (right or wrong) is the simplest form of feedback and can be used for 
simple exercises such as e.g. gauging for the understanding of the case description given, 
or for the understanding of basic concepts (see Figure 3). However, providing just correc-
tive feedback is often not enough. Elaborative feedback helps students understanding 
why certain solutions are more right or wrong than others. Elaborative feedback can be 
provided as explanations in multiple choice questions, or e.g. as annotated model solu-
tions or student solutions, explaining their good and bad elements (see e.g. Figure 4). 



 
Figure 3. Examples of questions with corrective feedback 

 
Figure 4. Elaborative feedback as explanations in multiple choice questions or as annotated model solution 

Developing a student's ability to elaborate themselves on the correctness and suitability 
of a solution can be achieved even better by providing students with cognitive feedback: 
prompts, cues, questions ... that help the learners to reflect on the quality of their modelling 
process and resulting models, so that they construct more effective cognitive schemas to 
improve future performance (Estefania Serral, De Weerdt, Sedrakyan, & Snoeck, 2016) 
(G. Sedrakyan & Snoeck, 2017). A very simple form of cognitive feedback, such as trans-
lating a student's model to text (This is what your model says: "..."; is this what you meant 
to express?) proves to be already quite effective to foster a student's self-reflection on 
his/her modelling performance. 
Individual feedback fosters the evolution towards a more student-centered, active learning 
approach. This can be achieved by cutting down on lecture time in favor of lab sessions 
where students can exercise at their own pace. Also, "flipped classrooms", where students 
study the easy parts on their own, allow reserving contact hours to deal with students' 
individual questions rather than for lecturing.  
The experience with the positive effects of cognitive feedback, and the increase of the 
class size to around 100 students triggered a search for automating feedback. The 
MERODE modelling tool1 allows a student to draw a conceptual model as ac combination 
of a class diagram, finite state charts and an object-event table that captures the interac-
tion aspects. The tool was enriched with different forms of automated 'on demand' cogni-
tive feedback: a model-to-text feature and verifying the model for obvious missing 
elements (e.g. no way to create or end objects in a class) (Snoeck, Haesen, Buelens, De 
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Backer, & Monsieur, 2007). More advanced cognitive feedback has been developed as a 
prototyping tool: an in-depth understanding of a model requires the ability to mentally pic-
ture and test the application that will result from the model, something that is very hard to 
achieve for novice modelers. Students can export their model to a code generator that will 
generated a prototype Java application. This enables the students to simulate a model. 
To help students linking the application's behavior to its origin in the model, the code gen-
eration was enriched with cognitive feedback: when the application refuses an action, the 
error window visualizes the location of the constraint in the model, e.g. "You cannot per-
form the 'ship' action on this order, because the finite state charts of 'Order' says your 
order needs to be in the state 'confirmed'". Experimental research shows that such cogni-
tive feedback enhances the students' performance significantly (G. Sedrakyan, Poelmans, 
& Snoeck, 2017; Gayane Sedrakyan, Snoeck, & Poelmans, 2014). The same approach 
applied to the model-driven engineering of user interfaces (Jenny Ruiz et al., 2017), shows 
a similar positive effect on students' performance (J. Ruiz, Serral Asensio, & Snoeck, 
2020). Mining the logs of student activity furthermore shows a difference in the process of 
modelling between better and worse students (Gayane Sedrakyan, De Weerdt, & Snoeck, 
2016). This opens up the perspective for process-oriented feedback as a complement to 
the current task-oriented feedback (Hattie & Timperley, 2007; Estefanía Serral & Snoeck, 
2016). The different types of (task-oriented) feedback are very much appreciated by the 
students (Jenny Ruiz et al., 2017; Gayane Sedrakyan et al., 2014; Snoeck et al., 2007). 

Bringing it all together 
Learning management systems are helpful in organizing the learning material in a sys-
tematic way. Rather than organizing a course's page along the type of material (slides, 
exercises, assignments, etc.), organizing the material along learning objectives allows 
creating modules that brings together the tasks, the supporting material, and part-task 
practice exercises that address a common set of learning objectives.  
This also facilitates moving to a blended learning approach where part of the learning 
happens online. Most of the learning management systems offer facilities for incorporating 
quizzes and thus facilitate the inclusion of automated (corrective) feedback. Videos, quiz-
zes and tasks can thus be brought together to foster active learning.  

Lessons learned 
Moving to a blended approach changes the nature of teacher-student interaction: a course 
becomes more student-oriented and less-student oriented. Overall, the offering of online 
material is very much appreciated by students. Automated feedback, code generation and 
online course material all score high on perceived utility by students. Short videos and 
recorded lectures are deemed useful for re-watching material students missed or didn't 
understand fully, slides are appreciated because of their more visual character, while the 
textbook is appreciated for its completeness, and found easier to grasp the global picture 
compared to online material. The different types of material clearly serve different goals 
and different learner preferences. 
On the downside it should be noted that the development of the tools, automated feedback 
and online lectures is time consuming. Which material to convert to online should there-
fore be carefully considered: this should preferably be done for stable course parts, e.g. 



parts that have been used and perfected during face-to-face teaching. In addition, care 
should be taken to modularize and implement the material in such a way that modifications 
can be performed without too much rework. Despite the required investment effort, auto-
mation is worth the effort as it pays off in subsequent years and it creates more time for 
coaching student on more interesting and challenging questions.   
Another potential downside is that while the student-centered approach is appreciated by 
all, it seems to only work well for students with high self-regulation capabilities: a self-
paced course leaves more room for procrastination. This could be partly addressed by 
means of permanent evaluation and process-oriented feedback. Yet it remains an open 
question to what extent this is the responsibility of teachers at higher education level, 
especially when teachers face large groups. To a certain extent, one can argue that de-
veloping one's self-regulation capabilities is part of the generic learning objectives of 
higher education. 

Conclusion 
This paper presents the experiences with using Bloom's taxonomy, 4C/ID, and technol-
ogy-supported feedback for improving the teaching of the complex learning topic of Con-
ceptual Modelling. Overall, the experiences have been more than positive: even though 
the course is experienced as hard, it receives excellent evaluations. From a teacher's 
perspective, starting with Bloom's taxonomy and proceeding to the use of 4C/ID once 
sufficient insight in the structure of of learning objectives and students' cognitive schema's 
has been gained, is the preferred approach. Developing technology support for feedback 
provisioning can be quite time consuming, but will benefit to students, and free the teacher 
of basic forms of feedback provision. Finally, care has to be taken to monitor students' 
self-regulation capabilities required when following a student-centered approach.  
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